The Large‐Scale Biosphere‐Atmosphere Experiment in Amazonia: Analyzing Regional Land Use Change Effects

1 de janeiro de 2004

jan 1, 2004

Michael Keller, Maria Assunção Silva‐Dias, Daniel C. Nepstad, Meinrat O. Silva‐Andreae

The Brazilian Amazon currently releases about 0.2 Pg-C to the atmosphere each year as a result of net deforestation. Logging and forest fire activity are poorly quantified but certainly increase this amount by more than 10%. Fires associated with land management activities generate smoke that leads to heating of the lower atmosphere, decreases in overall cloudiness, increases in cloud lifetimes, and the suppression of rainfall. There are considerable uncertainties associated with our understanding of smoke effects. Present development trends point to agricultural intensification in the Brazilian Amazon. This intensification and the associated generation of wealth present an opportunity to enhance governance on the frontier and to minimize the damaging effects of fires.

Baixar (sujeito à disponibilidade)

Download (subject to availability)

Veja também

See also

Threshold Responses to Soil Moisture Deficit by Trees and Soil in Tropical Rain Forests: Insights from Field Experiments

Threshold Responses to Soil Moisture Deficit by Trees and Soil in Tropical Rain Forests: Insights from Field Experiments

Many tropical rain forest regions are at risk of increased future drought. The net effects of drought on forest ecosystem functioning will be substantial if important ecological thresholds are passed. However, understanding and predicting these effects is challenging using observational studies alone. Field-based rainfall exclusion (canopy throughfall exclusion; TFE) experiments can offer mechanistic insight into the response to extended or severe drought and can be used to help improve model-based simulations, which are currently inadequate.