Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

1 de fevereiro de 2006

fev 1, 2006

Ane Alencar, Daniel Nepstad, Mariadel Carmen Vera Diaz

Understory fires, which burn the floor of standing forests, are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Niño–Southern Oscillation (ENSO) episodes. However, the authors are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. In this paper, the area of forest understory fires for the Brazilian Amazon region is calculated during an El Niño (1998) and a non–El Niño (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazonia, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings.

These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non-ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 × 106 ha) was 13 times greater than the area burned during the average rainfall year (0.2 × 106 ha), and twice the area of annual deforestation. Dense forest was, proportionally, the forest type most affected by understory fires during the El Niño year, while understory fires were concentrated in transitional forests during the year of average rainfall. The estimate here of aboveground tree biomass killed by fire ranged from 0.049 to 0.329 Pg during the ENSO and from 0.003 to 0.021 Pg during the non-ENSO year.

Baixar (sujeito à disponibilidade)

Download (subject to availability)



Este projeto está alinhado aos Objetivos de Desenvolvimento Sustentável (ODS).

Saiba mais em brasil.un.org/pt-br/sdgs.

Veja também

See also

Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform

Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform

  Widespread in the subtropics and tropics of the Southern Hemisphere, savannas are highly heterogeneous and seasonal natural vegetation types, which makes change detection (natural vs. anthropogenic) a challenging task. The Brazilian Cerrado represents the...