Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest

22 de setembro de 2004

set 22, 2004

Eric A. Davidson, Daniel C. Nepstad, Françoise Yoko Ishida, Paulo M. Brando

Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climate. Here, we report the final results of a 5‐year, large‐scale (1 ha) throughfall exclusion experiment, followed by 1 year of recovery with natural throughfall, conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N2O emissions in four out of five treatment years (a natural drought year being the exception), and then recovered during the first year after the drought treatment stopped. Similarly, consumption of atmospheric CH4 increased under drought treatment, except during a natural drought year, and it also recovered to pretreatment values during the first year that natural throughfall was permitted back on the plot.

No treatment effect was detected for NO emissions during the first 3 treatment years, but NO emissions increased in the fourth year under the extremely dry conditions of the exclusion plot during a natural drought. Surprisingly, there was no treatment effect on soil CO2 efflux in any year. The drought treatment provoked significant tree mortality and reduced the allocation of C to stems, but allocation of C to foliage and roots were less affected. Taken together, these results suggest that the dominant effect of throughfall exclusion on soil processes during this 6‐year period was on soil aeration conditions that transiently affected CH4, N2O, and NO production and consumption.

Full article.

Baixar (sujeito à disponibilidade)

Download (subject to availability)

Veja também

See also

Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine

Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine

Brazil has a monitoring system to track annual forest conversion in the Amazon and most recently to monitor the Cerrado biome. However, there is still a gap of annual land use and land cover (LULC) information in all Brazilian biomes in the country. Existing...

The 2010 Amazon Drought

The 2010 Amazon Drought

In 2010, dry-season rainfall was low across Amazonia, with apparent similarities to the major 2005 drought. We analyzed a decade of satellite-derived rainfall data to compare both events. Standardized anomalies of dry-season rainfall showed that 57% of Amazonia had...