The drivers and impacts of Amazonforest degradation

26 de janeiro de 2023

jan 26, 2023

David M. Lapola, Patricia Pinho, Jos Barlow, Luiz E. O. C. Aragão, Erika Berenguer, Rachel Carmenta, Hannah M. Liddy, Hugo Seixas, Camila V. J. Silva, Celso H. L. Silva-Junior, Ane A. C. Alencar, Liana O. Anderson, Dolors Armenteras, Victor Brovkin, Kim Calders, Jeffrey Chambers, Louise Chini, Marcos H. Costa, Bruno L. Faria, Philip M. Fearnside, Joice Ferreira, Luciana Gatti, Victor Hugo Gutierrez-Velez, Zhangang Han, Kathleen Hibbard, Charles Koven, Peter Lawrence, Julia Pongratz, Bruno T. T. Portela, Mark Rounsevell, Alex C. Ruane, Rüdiger Schaldach, Sonaira S. da Silva, Celso von Randow, Wayne S. Walker

Approximately 2.5 × 10⁶ square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year−1), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year−1). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest.

Baixar (sujeito à disponibilidade)

Download (subject to availability)



Este projeto está alinhado aos Objetivos de Desenvolvimento Sustentável (ODS).

Saiba mais em brasil.un.org/pt-br/sdgs.

Veja também

See also

Net primary productivity and seasonality of temperature and precipitation are predictors of the species richness of the Damselflies in the Amazon

Net primary productivity and seasonality of temperature and precipitation are predictors of the species richness of the Damselflies in the Amazon

Several hypotheses have been proposed to explain the mechanisms that generate temporal and spatial species richness patterns. We tested four common hypotheses (water, energy, climatic heterogeneity and net primary productivity) to evaluate which factors best...

The potential ecological costs and cobenefits of REDD: a critical review and case study from the Amazon region

The potential ecological costs and cobenefits of REDD: a critical review and case study from the Amazon region

Analysis of possible REDD program interventions in a large-scale Amazon landscape indicates that even modest flows of forest carbon funding can provide substantial cobenefits for aquatic ecosystems, but that the functional integrity of the landscape’s myriad small watersheds would be best protected under a more even spatial distribution of forests. Because of its focus on an ecosystem service with global benefits, REDD could access a large pool of global stakeholders willing to pay to maintain carbon in forests, thereby providing a potential cascade of ecosystem services to local stakeholders who would otherwise be unable to afford them.