

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Environmental Drivers and Network Structure of Hylid Anurans in Floating Meadows From Amazonian Oxbow Lakes

Lucicléia Railene Assis de Matos

Universidade Federal do Acre

Werther Pereira Ramalho (werther@institutoboitata.org)

Instituto Boitatá de Etnobiologia e Conservação da Fauna https://orcid.org/0000-0002-1049-2307

Filipe Viegas de Arruda

Instituto Nacional de Pesquisas do Pantanal

Karoline Ceron

Universidade Federal de Mato Grosso do Sul

Pedro Luna

Instituto de Ecologia

Lucena Rocha Virgílio

Universidade Federal do Acre

Lisandro Juno Soares Vieira Universidade Federal do Acre

Research Article

Keywords: Floodplain, macroinvertebrates, ecological interactions, nestedness, modularity, river-lake connectivity

DOI: https://doi.org/10.21203/rs.3.rs-748588/v1

License: (c) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

1	Environmental drivers and network structure of hylid anurans in floating meadows from Amazonian oxbow
2	lakes
3	
4	Lucicléia Railene Assis de Matos ¹ , Werther Pereira Ramalho ^{2,3*} , Filipe Viegas de Arruda ^{3,4} , Karoline Ceron ⁵ ,
5	Pedro Luna ⁶ , Lucena Rocha Virgílio ^{7,8} , Lisandro Juno Soares Vieira ^{1,8}
6	
7	¹ Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre,
8	69920-900, Rio Branco, AC, Brazil
9	² Instituto Boitatá de Etnobiologia e Conservação da Fauna, 74093-250, Goiânia, GO, Brazil
10	³ Laboratório de Biogeografia e Ecologia Aquática, Centro de Pesquisa e Pós-Graduação, Universidade Estadual
11	de Goiás, Campus Central, 75132-903, Anápolis, GO, Brazil
12	⁴ Instituto Nacional de Pesquisa do Pantanal (INPP), Campus Avançado do Museu Paraense Emílio Goeldi,
13	78060-900, Cuiabá, MT, Brazil
14	⁵ Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Mato Grosso do Sul,
15	79070-900, Campo Grande, MS, Brazil
16	⁶ Red de Ecoetología, Instituto de Ecología A. C., 91073, Xalapa, VE, Mexico
17	⁷ Centro Multidisciplinar, Universidade Federal do Acre, Campus Cruzeiro do Sul, AC, Brazil
18	⁸ Laboratório de Ictiologia e Ecologia Aquática, Centro de Ciências Biológicas e da Natureza, Universidade
19	Federal do Acre, 69920-900, Rio Branco, AC, Brazil
20	*Correspondence author
21	E-mail: werther@institutoboitata.org
22	
23	Abstract
24	Despite the increasing amount of knowledge available regarding the ecological interactions between species, the
25	dynamics of anurans in aquatic environments are little explored and understood. In this way, our work aims to
26	assess which factors influence the composition and the ecological interactions of hylid anurans in oxbow lakes
27	in the middle Purus River, Amazonas. We sampled three lakes with high, medium and low levels of
28	connectivity twice, once during the flood and then in drought hydrological regimes. Variations in the hylid

- connectivity twice, once during the flood and then in drought hydrological regimes. Variations in the hylid
- 29 anuran assemblages and ecological interactions were tested as function of environmental niche, food resources,
- 30 level of connectivity and hydrological regime. The availability of environmental resources and the availability

31 of food resources were the best factors that explain the distribution of hylid anurans, which were also highly 32 dependent on the variations between the hydrological regimes. The interactions between anurans, 33 macroinvertebrates and macrophytes showed a modular and specialized structure, which varied according to the 34 connectivity and hydrological regime of the lakes. Connectance showed an increasing trend from high to low 35 connectivity lakes, suggesting that anurans had low trophic and environmental specialization in lakes with low 36 connectivity. Hylids found in the lake of medium connectivity had higher values of trophic specialization and 37 modularity. Our results illustrate the role of river-lake connectivity and annual hydrological cycle to maintain 38 the aquatic biota and their interactions, and highlight the importance of floating meadows for the maintenance of 39 biodiversity in floodplains.

40 Keywords: Floodplain, macroinvertebrates, ecological interactions, nestedness, modularity, river-lake

41 connectivity

42

43 Introduction

44 In aquatic environments, changes in community structure are attributed to the sum of multiple processes, 45 including limiting and homogenizing effects of the species dispersion (Junk et al. 1989). Hydrological variation 46 caused by the flood pulse in floodplains is a primary factor responsible for the ecological changes in aquatic 47 biota (Junk et al. 2014), mainly mediated by the connectivity of river-lake systems (Thomaz et al. 2007). Floods 48 create temporary connections between rivers and lakes which promote biological homogenization, through 49 dispersion of biota and dilution of chemical components (Thomaz et al. 2007; Petsch 2016). When lakes are 50 totally or partially isolated, local factors tend to influence variations in communities, including a reduction in 51 depth, lake area, water transparency and dissolved oxygen content, as well as increase in nutrient concentration, 52 electrical conductivity, pH and predation pressure (Thomaz et al. 2007; Scarabotti et al. 2011). Community 53 structure therefore is influenced by how individuals from different species are filtered by the environmental 54 constraints imposed by isolation, which may affect their ecological interactions and the dispersal capacity of 55 each species (Hubbel 2001; Begon et al. 2006).

In tropical lakes (e.g., oxbow lakes) floating meadows are dominant floristic elements, which may be composed mainly by amphibian and free-floating plant species commonly known as macrophytes (Moura Júnior et al. 2015). The aquatic macrophytes tend to grow rapidly and undergo changes in their distribution due to the spatial and seasonal dynamics of the flood pulses (Junk et al. 1989), which ultimately influence the structure of aquatic communities (Junk et al. 1989). Such changes prompt the flow of nutrients and organisms, increasing

61 spatial heterogeneity and availability of niches and resources between lakes (Thomaz et al. 2007). Because of 62 these traits, floating meadows are ideal environments for reproduction, refuge and feeding of fauna species 63 (Luz-Agostinho et al. 2009), which are important in the maintenance of the diversity of both macroinvertebrates 64 (e.g., insects; Petry et al. 2003; Peiró and Alves 2006; Pelicice and Agostinho 2006) and vertebrates such as 65 amphibians (Upton et al. 2014; Ramalho et al. 2016, 2018; Ganança et al. 2021). Floating meadows hosted 66 unique communities of anurans (Ramalho et al. 2018), that use the floating environment for breeding, sheltering, 67 foraging and dispersal (Hodl 1977; Hoogmoed 1993; Schiesari et al. 2003; Upton et al. 2014; Böning et al. 68 2017). The complex environment created by the unstable movement of floating meadows also act as a filter for 69 anuran species, since the occurrence of anuran species is dependent on macrophyte composition and their 70 vertical and horizontal structure (Upton et al. 2011, 2014; Ganança et al. 2021). In this sense, anuran 71 communities in floating meadows are composed essentially by hylid (i.e., treefrogs) anurans (Upton et al. 2014; 72 Böning et al. 2017; Ramalho et al. 2018). However, the role of macrophyte species composition (i.e., as 73 potential environmental niche) and their associated macroinvertebrates (i.e., as potential food resource), as well 74 as other local predictors (e.g., river-lake connectivity and hydrological regime), in the variation of anuran 75 communities in floating meadows are still misunderstood, causing a gap in the knowledge as to the complex 76 biodiversity in floodplains.

77 The use of tools from the Theory of Complex Networks has been useful to understand new aspects of 78 the ecology and evolution of species assemblages. This is because these tools allow us to study how the species 79 and their interactions are structured and how such structures vary over ecological gradients (Tylianakis and 80 Morris 2017). Space may promote variation in network structure by affecting the likelihood of potential 81 interactions (Guimarães Jr. 2020). Changes in the relative abundance or quality of the interaction partners can be 82 explained by different factors, such as latitudinal patterns (Ceron et al. 2019). Tropical anuran-prey networks 83 have high connectance, low modularity, and complementary specialization that are explained by the generalist 84 diet of anurans (Ceron et al. 2019). However, despite the knowledge of the global pattern involving anuran 85 networks, the knowledge regarding the properties of ecological interactions at local freshwater communities is 86 still scarce. Indeed, we still lack theory and natural history to understand how the anuran assemblages interact 87 with macrophytes assemblages in floating meadows (i.e., as an environmental resource for anurans) and their 88 associated macroinvertebrates (i.e., as a part of the diet for anurans). Therefore, investigating how interactions 89 are affected by changes in river-lake connectivity and hydrological regimes will increase of understanding of 90 how freshwater communities are assembled and maintained.

91 The aim of this study was to examine how the communities of hylid anurans can vary with macrophyte 92 assemblages in floating meadows and their associated macroinvertebrates, and how these interactions are 93 affected by changes in river-lake connectivity and hydrological cycle. Specifically, we tested the following 94 hypotheses: (i) the environmental niche and available food resources are the primary predictors explaining the 95 variation in composition of hylid anurans, although it should be dependent on both river-lake connectivity and 96 hydrological cycle. We do expect this relationship because anurans associated with floating meadows are 97 formed specially by species adapted to the flood pulse (Ramalho et al. 2018), which use the floating vegetation 98 as calling and breeding sites (Hödl 1977; Upton et al. 2014; Ramalho et al. 2016), dispersion vectors (Schiesari 99 et al. 2003; Böning et al. 2017) and potential source of food because they house a high diversity of 100 macroinvertebrates (St. Pierre and Kovalenko, 2014). Thus, we sought to confirm that floating meadows contain 101 enough environmental heterogeneity that induce to a non-random anuran assemblage structure (Ganança et al. 102 2021). If the environmental niche and food resource, as well as their variations throughout the hydrological 103 cycle and lake-river connectivity, are important components to structure anuran communities, (ii) we expect that 104 interactions between hylid anurans, macrophytes and macroinvertebrates vary in function of river-lake 105 connectivity and hydrological regime. To this end, we identified the macrophyte species where each specimen 106 was registered and analyzed its stomach content. According to the optimal foraging theory (OFT), when food is 107 scarce, individuals expand their diet width to include less-favored items, which may expend their trophic niches 108 and therefore affect their ecological networks (Emlen 1966; Robinson and Wilson, 1998). Thus, we predict that 109 the oxbow lake more isolated and with low connectivity level has a high number of interactions (i.e., high 110 connectance), in response to the lower supply of food, resulting in non-restrictive diets. In contrast, because 111 more connected lakes have higher migration taxes (e.g., macrophyte species; Mormul et al. 2013), they can 112 result in a great prey availability, leading to a maximum of prey selectivity and more specialized networks. We 113 expect also that interactions between anurans and invertebrates would display modularity as it has been shown 114 that such networks are not nested, but they show low levels of specialization and modularity and high 115 connectance (Ceron et al. 2019). Across the different hydrological regimes and river-lake connectivity, we 116 expect that such properties are going to vary, from more specialized interactions in the most connected lakes to 117 generalized interactions in the less connected lakes. 118

- 119 Material e methods
- 120 Study area

121 The study was conducted in lakes located in the floodplain of the middle Purus River, in the municipality of 122 Boca do Acre, State of Amazonas, Brazil (Figure 1). The Purus River basin is located in the northeast region of 123 the Amazon, where the Purus River is one of the greatest tributaries of the Solimões-Amazonas system. This 124 river is one of the longest rivers in South America, covering approximately 3,380 km, entering Brazil through 125 the State of Acre, with its mouth in the river Solimões, state of Amazonas. It is classified as a white-water river 126 (Sioli 1991) with meandering pattern and water rich in Andean sediments (Ríos-Villamizar et al. 2011). The 127 climate of the region is tropical rainy monsoon type (Köppen 1948; Projeto RadamBrasil 1976). The rainfall has 128 an annual cycle marked by a rainy season, between November and March, and a dry season, between May and 129 September, while April and October are considered transition months (Angelis et al. 2008).

Figure 1. Oxbow lakes sampled in the middle Purus River, Amazon basin, Brazil. Yellow circles indicate the
location of the transects sampled in the Flor do Ouro Lake (FO1, FO2, FO3), Verde Lake (VE1, VE2, VE3) and
Bom Lugar Lake (BL1, BL2, BL3).

136 Lake and connectivity categorization

137 We surveyed the anuran assemblages, macrophytes and macroinvertebrates in three oxbow lakes in the middle 138 Purus River (Figure 1). The lakes were selected based on the connectivity criteria, in which we used the 139 parameters of lake depth (m), connectivity depth (m), connectivity profile (terrain elevation in meters), 140 connectivity length (m) and permanence of connection of the lake-river over the hydrological cycle. The depth 141 of each lake and its connectivity was measured every 50 m using an echo-sounder model Eagle Cuda 168. The 142 connectivity profile and connectivity length were obtained using a portable GPS tool. For the connectivity 143 profile, the elevation was measured every 50 m to find a proxy of the terrain' variation close to the confluence 144 with the Purus River. These measures were obtained during flood and drought hydrological season for the lakes 145 of high and medium connectivity, and during the flood for the lakes of low connectivity. The oxbow lake 146 categorized as high connectivity (Bom Lugar lake) presented an average depth of 19.1 ± 6.1 m, connectivity 147 depth of 6.9 ± 3.8 m, connectivity profile with elevation of 337.4 ± 18.1 m asl and connectivity length of 2.172148 m, remaining connected with the Purus River throughout the flood and drought hydrological cycle. The lake of 149 medium connectivity (Flor do Ouro lake) presented an average depth of 17 ± 5.4 m, connectivity depth of $7.4 \pm$ 150 3.6 m, connectivity profile with elevation of 319.4 ± 6.1 m as and connectivity length of 456 m, remaining 151 partially connected with the river during the drought. The lake of low connectivity (Verde lake) presented an 152 average depth of 8.8 ± 3.6 m, connectivity depth of 3.8 ± 5.8 m, connectivity profile with elevation of 371.2 ± 3.6 m 153 20.6 m asl and connectivity length of 305 m, remaining disconnected from the river during the drought 154 hydrological regime (Table 1). Thus, our observations in the field allowed us to infer that the connectivity 155 profile (variation of terrain elevation) is directly related to the degree of connectivity. For example, although the 156 high connectivity lake has longer connectivity and depth of connectivity similar to that of medium connectivity, 157 the lower profile of the terrain along connectivity allows it to remain connected with the river during all 158 hydrological regimes.

- 159
- 160 Table 1. Characterization of the oxbow lakes sampled in the middle Purus River, Amazon basin, Brazil, and its
- 161 respective degree of connectivity.

Domomotors	Oxbow lake						
Parameters	Bom Lugar	Flor do Ouro	Verde				
Latitude	8.38515	8.28393	8.44361				
Longitude	67.20373	67.23290	67.22490				

Daramatara	Oxbow lake						
Parameters Lake depth (m) Connectivity depth (m) Connectivity profile (m asl) Connectivity length (m)	Bom Lugar	Flor do Ouro	Verde				
Lake depth (m)	19.1±6.1	17±5.4	8.8±3.6				
Connectivity depth (m)	6.9±3.8	7.4±3.6	3.8±5.8				
Connectivity profile (m asl)	337.40±18.08	319.40±6.08	371.2±20.64				
Connectivity length (m)	2.172	459	305				
Time of connectivity	Flood and drought	Flood and early drought	Flood				
Degree of connectivity	High	Medium	Low				

163 Data collection

In each lake, we surveyed the anuran assemblages, floating meadows and macroinvertebrates along three transects, totalizing nine transects in the middle Purus River (Figure 1). The transects were standardized in 200 m length, with a minimum distance of 1000 m among them in each lake and chosen according to the availability of floating meadows. We surveyed each transect twice, once during the hydrological regime of drought (8-17 July 2017) and once during the flood season (17-25 January 2018).

169

170 Environment and food resource availability

171 We evaluated the available environmental resources through the abundance of the macrophytes species in the 172 floating meadows sampled in each transect. The abundance of the macrophyte was visually evaluated by the 173 counting of the coverage percentage of each species within a 0.5 x 0.5 m quadrat. Within each 200 m transect, 174 we conducted a boat sampling at a distance of approximately 10 m from the edge of the lake and delimited five 175 equidistant points (every 50 m) to throw the quadrat, where we throw it five times per point in each survey, 176 totalizing 25 quadrats in each transect. The abundance of macrophyte species obtained for each point were 177 summed up to estimate the total covering in each transect. Macrophyte species were identified according to 178 Guterres et al. (2008), Thiers (2018), SPLink (2018) and Flora do Brasil (2020). The availability of food 179 resources was evaluated through the collection of macroinvertebrates in floating meadows at the same time and 180 at the same points where macrophyte species were sampled along the 200 m transect. The samplings were 181 carried out using a 4m² seine floating net, formed by two cables of 220cm length connected to a net of 200cm 182 width and 200cm length, handled by two researchers. The floating net was pulled in the floating meadows, from 183 the bottom to the surface, seeking the maximum capture of individuals for 10 minutes every 50 m. The

184 invertebrate specimens were euthanized with a lethal chamber, using 58% acetone and fixed in 70% alcohol.

185 The highest possible taxonomic level was identified using the aquatic insect guide of Hamada et al. (2014).

186

187 Anuran surveys and stomach contents analysis

188 The hylid anuran surveys were carried out at the same transects and at the same time of the surveys of 189 macrophytes and macroinvertebrates. We performed the anuran sampling using the active and auditory search 190 methods (Crump and Scott Jr. 1994), always carried out by two researchers on a boat, approximately 10 m from 191 the edge of the lake. For each anuran individual visualized, the macrophyte species where it was found calling 192 or foraging at the time of collection was registered and named as environmental resource used. The individuals 193 sampled were anesthetized and euthanized with 5% xylocaine, fixed in 10% formalin and stored in 70% alcohol. 194 The stomachs of the collected specimens were removed, the contents were scattered in a Petri dish, counted and 195 analyzed using a stereomicroscope, and subsequently preserved in 1µl microtubes (Eppendorf) with 70% 196 alcohol. Food items were identified and categorized to the lowest possible taxonomic level (Hamada, et al.

197 2014), named as a food resource consumed and used in the following interaction analysis.

198

199 Data analysis

200 We focused our hypothesis in a limited number of species because most species were not prevalent throughout 201 the samples. To test whether the variations in the hylid anuran assemblages are explained mainly by 202 environmental niche and food availability, we built four models referring to each group of predictor variables 203 that could influence the species composition variation in the floating meadows. Thus, models included the 204 environmental niche, available food resources, level of connectivity and hydrological regime. Firstly, in the 205 model of environmental niche we included only macrophyte species that (i) occurred in at least three samples or 206 (ii) showed a coverage percentage \geq equal to or greater than 5% in at least one sample. For the models of food 207 availability resources, only taxa of macroinvertebrates that (i) occurred in at least three samples or (ii) had total 208 abundance \geq equal to or greater than 20 were considered. Anuran abundance was standardized through 209 Hellinger's transformation (Legendre & Legendre, 2012). Percentage values of available environmental 210 resources and abundance of available food resources were transformed by calculating the square root and 211 logarithmic function, respectively. The levels of connectivity and hydrological regime were rank-categorized 212 (connectivity: low = 1, medium = 2, high = 3; hydrological regime: drought = 1, flood = 2). In order to avoid 213 overestimation of the models, the influence of environmental niche and available food resources on the anuran

214 communities were evaluated by the forward selection procedure, and only the significant variables were selected 215 and included in the RDA (Blanchet et al., 2008). This procedure was performed with 999 iterations for each 216 model and the selection was finalized when the variables had a P value greater than α =0.05 (Peres-Neto et al., 217 2006). We tested the models' significance using a Redundancy Analysis (RDA) with 999 Monte Carlo 218 iterations. Moreover, we performed a Partial Redundancy Analysis (pRDA) with variance partitioning to 219 evaluate the pure and shared relative contribution of sets of variables to the variation in the hylid anuran 220 assemblages (Dray et al. 2012). Every procedure was performed using the functions available in the packfor 221 (Dray et al. 2013), vegan (Oksanen et al. 2017) and adespatial (Dray et al. 2020) packages in R software (R 222 Core Team 2020).

223 In order to examine the interactions between macrophytes, anurans and macroinvertebrates, we used 224 the data obtained from the macrophyte species in which the anuran was collected calling or foraging (the 225 environmental resource used) and the quantitative data on stomach content (food resources consumed), using an 226 approach based on the Theory of Complex Networks. For this, interaction matrices A were constructed, where 227 a_{ij} was the number of interactions of an anuran, with macrophyte or macroinvertebrate and 0 where there were 228 no interactions. We obtained 12 matrices corresponding to the interactions of hylid anurans observed in each 229 lake for the attributed category (high, medium and low connectivity) over two different hydrological regimes 230 (flood and drought). Each matrix was divided by the type of interactions, anurans with environmental resources 231 used (macrophyte) or food resource consumed (stomach content; i.e., macroinvertebrates); this for all oxbow 232 lakes and hydrological regimes. Finally, twelve matrices were obtained per lake, six with all interactions 233 between the anurans and macrophytes (environmental resource) in both hydrological regimes (drought and 234 flood), and six with macroinvertebrates (food resource) consumed in both hydrological regimes. For the 235 description of the interactions, we used the following network descriptors: connectance, weighted nestedness 236 (wNODF), modularity and complementary specialization (H₂'), similar to the approach used by Ceron et al. 237 (2019).

Connectance describes the ratio between the total number of realized links and the maximum theoretical number of links. This d gives a description of how many interactions are not realized based in the total possible (Jordano 1987). Its values range from 0 to 1, 0 indicates that all of potential interactions are not realized and 1 indicates that all the potential interaction in the network is realized. Weighted nestedness, based on the Nestedness Metric, Based on Overlap and Decreasing Fill (NODF), describes the extent to which interactions of specialist species correspond to a subset of generalist interactions (Bascompte et al. 2003). We 244 calculated the weighted nestedness (wNODF), which is based on the overlap and decreasing fill in the weighted 245 matrix (Almeida-Neto and Ulrich 2011). Nestedness values range from 0 (non-nested network) to 100 (perfect 246 nesting). We also calculated modularity, which measures how groups of species are densely connected and 247 present only sparser connections with other groups of interacting species. We analyzed modularity using the 248 recently implemented LPAwb + algorithm (Liu and Murata 2010; Beckett 2016). Finally, we calculated 249 complementary specialization (H_2 '), which is a network-wide index of specialization for quantitative interaction 250 matrices. It describes how species restrict their interactions from those randomly expected based on partner's 251 availability (Blüthgen et al., 2006). The assumption is that if species have preferences for specific interaction 252 partners, these preferences would be captured as a deviation from random encounters given by partner 253 availability (Blüthgen et al. 2006). Values of H₂' range from 0 to 1 indicating the extremes of generalization and 254 specialization, respectively. The significance of wNODF, modularity, and H_2 ' were assessed by comparing them 255 with those obtained for randomized networks generated by a null model based on Patefield's algorithm 256 (Patefield 1981). We generated 1,000 randomized matrices to estimate the significance of nestedness and 257 complementary specialization and 100 matrices to estimate modularity. To quantify the departure of the 258 observed network values from null expectation, we calculated null-model corrected values by subtracting 259 observed metric value from mean value across all randomized networks (Δ – transformation). Then, the Δ – 260 transformed value was divided by the standard deviation of values across all randomized networks (z – 261 transformation; Dalsgaard et al. 2017; Zanata et al. 2017). All network metrics and null models were calculated 262 with the 'bipartite' ver. 2.08 package (Dormann et al. 2008) in R software (R Core Team 2020). 263 264 Results

265 Environmental and available food resources

266 We identified 32 species of macrophytes in the floating meadows, 25 in lakes of high-level connectivity, 20 in

267 medium and 16 in low connectivity. The most abundant macrophyte species were *Pistia stratiotes* (Araceae)

268 (21%), Eichhornia crassipes (Pontederiaceae) (16%) and Ludwigia helminthorrhiza (Onagraceae) (11%).

- 269 During the flood, the more abundant macrophyte species were *P. stratiotes* in lakes of high and medium
- 270 connectivity (42% and 35%, respectively) and *E. crassipes* (34%) in low connectivity. During the hydrological
- regime of drought, the more abundant species were *P. stratiotes* (25%) in lakes of high connectivity, *E.*
- 272 *crassipes* (44%) in medium, and *L. helminthorrhiza* (38%) in low connectivity lakes (Table S1).

- 273 We sampled 4041 individuals of macroinvertebrates. Individuals not identified or in the larval stage 274 were not used in the statistical analyzes. The more abundant invertebrate taxons were Hemiptera (18%),
- 275 Orthoptera (17%) and Diptera (Culicidae, 15%). The more abundant taxon during the flood hydrological regime
- 276 in the lake of high connectivity was Hemiptera (24%), while Orthoptera was more abundant in lakes of medium
- 277 (32%) and low (19%) connectivities. During the drought, the more abundant taxons were Hemiptera in lakes of
- 278 high (25%) and low connectivities (27%) and Orthoptera in the lake of medium (35%) connectivity (Table S2).
- 279
- 280 Effects of environment and available food resources on species abundance
- 281 We observed and recorded 741 individuals of five most prevalent hylid anurans in the floating meadows: Boana
- 282 punctata (129 individuals), Dendropsophus reticulatus (408), Sphaenorhynchus carneus (52), S. dorisae (34)
- 283 and S. lacteus (118; Table S3). Based on pre-established criteria, we selected 20 macrophyte species (available
- 284 environmental resource) and 18 macroinvertebrate taxa (available food resource) to compose the RDA models.
- 285 The model with macrophytes was the most explanatory (72%) and includes the species Pistia stratiotes,
- 286 Ceratopteris pteridoides, Lemna minuta and Utricularia gibba. Available food resources explained 57% of the
- 287 anuran variation and included the taxa Gastropoda, Odonata, Araneae and Orthoptera. The hydrological regime
- 288 and connectivity explained 37% and 16% of the variation, respectively. In general, the greatest explanation was
- 289 shared between macrophyte models, food resources and hydrological regime (78%), where the three groups
- 290 combined were explained better than individually. The pure explanations were 9% for macrophytes, 8% for food
- 291 resources and 1% for hydrological regime (Figure 2).
- 292

Figure 2. Variation in anuran abundance explained by environmental resources (macrophyte species), lake

295 connectivity, available food resources (macroinvertebrate taxons) and hydrological regime.

296

297 Food items consumed by anurans

298 Among the individuals registered and collected in the floating meadows, 334 had their had empty stomachs and 299 407 were used in our analysis, including 47 individuals of Boana punctata, 217 of Dendropsophus reticulatus, 300 41 of Sphaenorhynchus carneus, 81 of Sphaenorhynchus lacteus and 21 of Sphaenorhynchus dorisae. In 301 relation to food items consumed, Formicidae was the most frequent prey group (29.5%), followed by Aranea 302 (14.5%), and Culicidae (7.2%). During the rainy season, Formicidae was the most frequent prey in lakes of high 303 (69.1%), medium (42.0%), and low (69.6%) connectivity. However, during the dry season, the most consumed 304 prey changed among lakes with different connectivities: Aranae was the most frequent prey consumed in lakes 305 of high (22.1%) and medium (28.0%) connectivity, while Isoptera was most frequent in lakes of low 306 connectivity (25.0%) (Table S4).

307

308 Ecological interactions

309 Network metrics according to regime, connectivity and by the interaction type are shown in Table 2. 310 Connectance showed an increasing trend from high to low connectivity lakes in both interaction types. The 311 higher connectance values were recorded in macrophyte networks during the hydrological regime of drought in 312 lakes with low connectivity (C = 0.8; Figure 3). Networks did not show a nested pattern (p > 0.05 for all 313 networks). All networks (macrophytes and diet) showed higher trophic specialization and a modular structure, 314 with the exception of the macrophyte network in a flooded lake with low connectivity, and in a lake with 315 medium connectivity during the drought (Figure 3 and Figure 4). The most specialized interactions were 316 recorded in diet networks in the hydrological regime of flood in lakes with medium connectivity (H_2 ' = 0.85; 317 Figure 4). For macrophytes networks, the most specialized interactions were recorded in the hydrological 318 regime of flood in lakes with medium connectivity (H_2 ' = 0.41). Specialization and modularity showed a 319 decrease during the drought for both network types. Modularity was higher in diet networks during flood in 320 lakes with medium connectivity (M = 0.42). For macrophytes networks, modularity was absent or low both in 321 flood or drought (Figure 3 and Figure 4).

323 Table 2. Descriptors of networks divided by regime, connectivity and by the interaction between anurans,

324 macrophytes and macroinvertebrates. Z-scores values are in parentheses. M = microhabitat use and D = diet.

325 Values significantly (P <0.05) are in bold.

	Н	igh	Me	dium	Low		
Flood	D	М	D	М	D	М	
Connectance	0.34	0.38	0.32	0.56	0.61	0.77	
Nestedness	18.18	43.83	0	32	16.62	66.67	
Modularity	0.39 (9.63)	0.27 (6.52)	0.42 (7.13)	0.33 (9.2)	0.4 (7.55)	0.01 (-1.12)	
Specialization	0.67 (9.47)	0.22 (5.68)	0.85 (10.58)	0.41 (13.34)	0.71 (11.36)	0.03 (-0.66)	
Drought	D	М	D	М	D	М	
Connectance	0.47	0.5	0.5	0.66	0.61	0.8	
Nestedness	28.12	41.4	34.21	83.33	29.37	33.75	
Modularity	0.25 (4.08)	0.07 (-0.02)	0.22 (4.04)	0.01 (-0.91)	0.22 (7.25)	0.28 (7.82)	
Specialization	0.46 (5.38)	0.11 (1.89)	0.32 (3.03)	0.02 (-0.18)	0.42 (8.87)	0.27 (9.9)	

326

327

Figure 3. Graphs showing modules (colors) in anuran-macrophyte interactions by lake connectivity (high,
medium and low) during the hydrological periods of flood and drought. Circles represent macrophyte (orange)
and anuran (green) species.

333 Figure 4. Graphs showing modules (colors) in anuran-macroinvertebrate interactions by lake connectivity (high, 334 medium and low) during the hydrological periods of flood and drought. Circles represent prey categories 335 (orange) and anuran species (green).

332

337 Discussion

338 Our results support our first hypothesis, by showing that the availability of environmental resources (i.e., species 339 of macrophytes) and the availability of food resources (i.e., macroinvertebrates) are the best factors that explain 340 the distribution of hylid anurans. In addition, a high percentage of explanation indicates that the variation in 341 abundance of hylid anurans is highly dependent on the variation in the macrophytes and macroinvertebrates 342 composition between the hydrological regimes. Moreover, our results support the second hypothesis as we 343 found that the connectance, modularity and specialization of anuran, macrophytes and macroinvertebrates 344 networks varies depending on the connectivity and the hydrological regime. 345 We found that the abundance of the hylid species is influenced by all the factors that we measured (i.e.,

346 availability of environment, connectivity, food resource and hydrological regime). However, the availability of 347

- the environmental and food resources was the best factor explaining the variation in the abundance of anuran
- 348 species. Anurans that occur in floating meadows are highly adapted to the open and unstable environment
- 349 (Ramalho et al., 2018), where species are segregated horizontally and vertically according to their reproductive
- 350 and foraging requirements (Hödl 1977; Hoogmoed 2013; Upton et al. 2011; Upton et al. 2014). For example,
- 351 studies in other regions of the Amazon have found that Sphaenorhynchus carneus, S. dorisae and S. lacteus may

352 occupy lower vegetation in the floating meadows (e.g., in Salvinia spp., Eichhornia spp., and Pistia spp.), while 353 larger species such as Boana punctata and Dendropsophus reticulatus occupy higher strata in the floating 354 vegetation (e.g., in Paspalum repens) (Hödl 1977; Upton et al. 2011; Upton et al. 2014). These relationships 355 have shown that environmental characteristics of floating meadows (e.g., macrophyte height, macrophyte 356 morphotype composition and water depth) creates a gradient of environmental heterogeneity that acts as a filter 357 in anuran communities (Ganança et al. 2021). Our results indicate that the importance of macrophytes as 358 environmental resources for anurans is complex and varies in space and time, as indicated by the fractions 359 shared between environmental resources, lake-river connectivity and hydrological cycle.

360 The available food resources are good predictors of the variation in hylid abundance. The results 361 reinforce that variation in macroinvertebrates along with the environmental gradient of floating meadows may 362 exert a profound influence on the associated organisms (Poi de Neiff 2003; Peiró and Alves 2006; Upton et al. 363 2014; Hill et al. 2016). The main macroinvertebrates that explained the variation in hylids were Gastropoda, 364 Odonata, Araneae and Orthoptera, which apparently also interact in a complex way and mediated by specific 365 condition imposed by lake-river connectivity and hydrological cycle. Floating meadows, and macrophyte 366 species as well (as discussed in detail below), are then important foraging sites for anurans, although the 367 complexity of the interactions (e.g., if anurans are predator or prey) still needs to be more explored. Thus, 368 variations in the environmental and food resources directly influence anuran assemblage in floating meadows, 369 indicating a complex structuring by the niche and a non-random pattern in species distribution in space and 370 time.

371 As expected, the aquatic interactions between anurans, macroinvertebrates and macrophytes showed a 372 modular and specialized structure with no nestedness. Our results showed that the network descriptors among 373 anurans, macroinvertebrates and macrophytes networks vary according to the connectivity and hydrological 374 regime of the lake. Connectance showed an increasing trend from high to low connectivity lakes in both 375 interaction types. This result suggests that anurans are tend to establish more interactions with macrophytes and 376 macroinvertebrates when resources are expected to be more abundant (Thomaz et al. 2009). For specialization, 377 higher values were found in medium connectivity and had a decrease during the drought, both to diet and 378 macrophytes networks. During the drought, when resources are reduced, it is expected that anurans eat and use 379 the resources that are available, reducing specialization and increasing connectance (Emlen 1966; Robinson and 380 Wilson 1998). On the other hand, specialization may be especially favored when resource availability increases, 381 according to predictions of optimal foraging theory (Robinson and Wilson 1998). Therefore, in the flood season, when resources are supposedly more abundant in the floodplain, the species of hylids were more selective in
 terms of food selection and habitat use, so that each species tended to consume specific foods and occupy
 macrophytes with specific structures.

385 Macrophyte networks presented modular interactions both in flood and drought, which demonstrates 386 that anurans interact more often with some species of macrophyte. The formation of cohesive groups between 387 anurans and resources could indicate that anurans select the plant where they live and the resources they 388 consume. Therefore, it seems that anurans select fluctuant plants to use, which favors diet and breeding, but the 389 identity of these macrophytes did not strongly interfere with their choices. It is worth to note that the lack of 390 modularity or nestedness in some of the studied networks does not indicate that there could be other interactions 391 pattern within the networks (Guimarães Jr. 2020). The higher values of specialization in diet and macrophytes 392 networks and the high modularity in diet networks, all in medium connectivity, resemble how alpha diversity 393 changes in floodplain systems. Ward and Rockner (2001) proposed that the alpha diversity of several groups 394 reaches a peak in habitats with an intermediate degree of connectivity. This is because the excessive 395 connectivity may keep all communities in pioneer stages or may reduce species diversity if excessive nutrient 396 loading in the river leads to eutrophication of connected floodplain water bodies (Van den Brink et al. 1996; 397 Ward and Tockner, 2001). Thus, in intermediate levels of connectivity the local diversity of macrophytes and 398 prevs probably influences the ecological interactions of anurans derived from them. In fact, it has been shown 399 that the main factors structuring ecological networks are the local abundances of interacting species (neutral 400 factors) (Guimarães Jr. 2020).

401 The primary prey of anurans is insects, as well as other arthropods, such as spiders and mites (Simon 402 and Toft 1991; Duellman and Trueb 1994). Each anuran species tended to prefer certain food items and most of 403 the food items consumed by the anurans were available in the floating meadows. The items consumed by the 404 anuran species in this study corroborates the diet described for the species (Duellman 1978, 2005; Lopez et al. 405 2009). However, by implementing a network approach we were able to assess the changes in diet of anurans by 406 changes in habitat connectivity. In this case, we found that in lakes with low connectivity, anurans had a less 407 diversified diet. This evidence suggests that dispersion and therefore habitat connectivity are factors that 408 structure the anuran and its partners in all lakes, as expected by the Neutral theory of diversity (Hubbel 2001), in 409 which the movement of species is one of the factors explaining species local abundance, for example. 410 Variations in the availability of environmental resources (macrophytes) and food resources 411 (macroinvertebrates) were influenced by the connectivity of the lakes and hydrological regimes, affecting the

412	abundance and structure of interactions of hylid anurans. The interactions found showed that the species use the
413	same resources, which are available in the floating meadows for their consumption, and although they are more
414	generalist, some species use resources more specifically than others. These results show that the hylids
415	associated with floating meadows in this study have their distribution affected by the interaction to both
416	macrophyte and macroinvertebrate species, as well as to lake connectivity level and hydrological regimes. These
417	alterations in the environmental niche affect the anurans associated with floating meadows and show the
418	importance of this environment for biodiversity.
419	
420	Declarations
421	Funding – This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
422	Superior - Brasil (CAPES), which granted scholarships to WPR (proc. 88882.448043/2019-01), LRAM, FVA
423	and KC, and by the Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais which provided
424	financial support via Programa de Apoio à Pós-Graduação (PROAP).
425	
426	Acknowledgments - We thank the CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for
427	scholarships awarded, the Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais for
428	financial support via PROAP; to Ednelson for the excellent work as a boatman and local guide, the local
429	residents for the housing and support in the collections, and the graduate students Programa de Pós-Graduação
430	em Ecologia e Manejo de Recursos Naturais of the Universidade Federal do Acre for helping during fieldwork.
431	P. Luna wishes to thank Consejo Nacional de Ciência and Technology for scholarship (71366). FVA thanks
432	CNPQ by PCI-MCTIC/MPEG (302198/2020-2).
433	
434	Conflicts of interest/Competing interests – Authors declare that they have no conflict of interest.
435	
436	Availability of data and materials – All data produced from this study are provided in this manuscript.
437	
438	Author contributions - All authors contributed to the conceptualization and design of the project. LRAM and
439	WPR collected the data, performed the data analysis, and led the writing of the text. FVA, KC, and PL provided
440	additional expertise on interaction network, performed the data analysis, and wrote the text. LRV provided
441	additional expertise on hydrology and river-lake connectivity. LJSV assisted with data interpretation and

442	writing, and supervised this research. All authors critiqued the manuscript and gave final approval for
443	submission.
444	
445	Consent to Participate – Not applicable.
446	
447	Consent for Publication – Not applicable.
448	
449	Ethics Approval- This study follows the guidelines and permission to handle and collect animals given by the
450	Ministério do Meio Ambiente / Instituto Chico Mendes de Conservação da Biodiversidade (#57791-1).
451	
452	References
453	Almeida-Neto M, Guimaraes P, Guimaraes PR, Lovola RD, Ulrich W (2008) A consistent metric for nestedness
454	analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227-1239
455	Angelis CF. Waichaman AV, Silva AEP, Machado LAT (2008) Influência da precipitação na qualidade da água
456	do Rio Purus. Acta Amaz 38:733-742
457	Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic
458	networks. Proc Natl Acad Sci U. S. A. 100(16):9383-9387
459	Beckett SJ (2016) Improved community detection in weighted bipartite networks. R Soc Open Sci 3:140536.
460	https://doi.org/10.1098/rsos.140536
461	Begon M, Harper JL, Townsend CR (2006) Ecology: From individuals to ecosystems. 4 ed. Oxford: Blackwell
462	Publishing. pp.759
463	Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89: 2623-2632
464	Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC
465	Ecology, 6. http://dx.doi.org/10.1186 / 1472-6785-6-9
466	Böning P, Wolf S, Upton K, Menin M, Venegas PJ, Lötters S (2017) Amphibian diversity and its turnover in
467	floating meadows along the Amazon river. Salamandra 53(3):379-388

- 468 Ceron K, Oliveira-Santos LGR, Souza CS, Mesquita DO, Caldas FLS, Araujo AC, Santana DJ (2019) Global
- 469 patterns in anuran-prey networks: structure mediated by latitude. Oikos 128:1537–1548
- 470 Crump M L, Scott Jr. NJ (1994) Standard Techniques for Inventory and Monitoring Visual Encounters
- 471 Surveys. In Heyer WR, Donnely MA, McDiarmid RW, Hayek LC, Foster MS (Eds.). Measuring and monitoring
- biological diversity standard methods for amphibians, pp.84–91. Smithsonian Institution Press, London, UK
- 473 Dalsgaard B, Schleuning M, Maruyama PK, Dehling DM, Sonne J, Vizentin-Bugoni, J. Zanata T.B, Fjeldså J,
- 474 Böhning-Gaese K, Rahbek C (2017) Opposed latitudinal patterns of network- derived and dietary specialization
- in avian plant–frugivore interaction systems. Ecography 40:1395-1401
- 476 Dormann CF, Gruber B, Fründ J (2008) Introducing the bipartite package: analysing ecological networks. R
 477 News 8:8-11
- 478 Dray S, Bauman D, Blanchet G, Bocard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi N,
- 479 Wagner HH (2020) adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-8.
- 480 https://CRAN.R-project.org/package=adespatial
- 481 Dray S, Legendre P, Blanchet G (2016) packfor: Forward Selection with permutation (Canoco p.46). R package

482 version 0.0-8/r136. https://R-Forge.R-project.org/projects/sedar/

- 483 Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto P.R, Bellier E. Bivand R, Blanchet FG,
- 484 Cáceres M, Dufour AB, Heegaard E, Jombart T Munoz F, Oksanen J. Thioulouse J, Wagner HH (2012)
- 485 Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monographs 82.
- 486 https://doi.org/10.1890/11-1183.1
- 487 Duellman WE (1978) The biology of an Equatorial herpetofauna in Amazonian Ecuador. University of Kansas,
 488 Lawrence, Kansas. pp.352
- 489 Duellman WE (2005) Cusco Amazónico: The lives of Amphibians and Reptiles in an Amazonian Rainforest.
 490 Cornell University Press. pp.472
- 491 Duellman WE, Trueb L (1994) Biology of amphibians. The Johns Hopkins University Press, Baltimore and
 492 London. pp.670

- 493 Emlen, JM (1966) The role of time and energy in food preference. Amer Nat. 100:611–617
- 494 Flora do Brasil (2020) Jardim Botânico do Rio de Janeiro. Disponível em: < http://floradobrasil.jbrj.gov.br/ >.
 495 Acesso em: 30 set. 2020
- 496 Ganança PHS, Santos Jr., Kawashita-Ribeiro RA, Vasconcelos Neto LB, Santos Júnior IA, Guedes DS; de
- 497 Fraga DSG (2021) Habitats determining local frog assemblages within aquatic macrophyte meadows in
- 498 Amazonia, through species traits filtering. Austral Ecol 46(4):574-587
- 499 Guimarães Jr. (2020) The Structure of Ecological Networks Across Levels of Organization. Annu Rev Ecol
 500 Evol Syst 51:433-460
- 501 Guterres MG, Marmontel M, Ayub DM, Singer RF, Singer RB (2008) Anatomia E Morfologia Des Plantas
- 502 Aquáticas Da Amazônia (Utilizadas Como Potencial Alimento Por Peixe-Boi Amazônico). Belem/Pa; 1ª Edição
- 503 Hamada N, Nessimian JL, Querino RB (2014) Insetos aquáticos na Amazonia brasileira: taxonomia, biologia e
- 504 ecologia/Editores Neusa Hamada, Jorge Luiz Nessimian, Ranyse Barbosa Querino. Manaus: Editora do INPA.
 505 pp.724
- Hill MJ, Biggs J, Thornhill I, Briers RA, Gledhill DG, White JC, Woord PJ, Hassall C (2016) Urban ponds as
 an aquatic biodiversity resource in modified landscapes. Glob Change Biol 23(3) 986-999
- Hödl W (1977) Call differences and calling site segregation in Anuran Species from central Amazonian floating
 meadows. Oecologia 28:351-563
- 510 Hoogmoed MS (1993) The herpetofauna of floating meadows. In: Ouboter P.E. (eds) The Freshwater
- 511 Ecosystems of Suriname. Monographiae Biologicae. Springer, Dordrecht Academic Publishers, pp.199-213
- 512Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography, Princeton University Press.
- 513 pp.392
- 514 Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence
- asymmetries and coevolution. Amer Nat 129: 657-677

- 516 Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dogde, Dp.
- 517 Proceedings of the International Large River Symposium, Special Publications on Canadian Fishery and
- 518 Aquatic Sciences. 1989, pp.110-127.
- 519 Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes Da
- 520 Cunha C, Maltchik L, Schöngart J, Schaeffernovelli Y, Agostinho AA (2014) Brazilian wetlands: their
- 521 definition, delineation, and classification for research, sustainable management, and protection. Aquatic
- 522 Conservation: Marine and Freshwater Ecosystems 24:5-22
- 523 Köppen W (1948) Climatologia: Com um estudio de los climas de la tierra. Fondo de Cultura Econômica,
 524 México. pp.127-144
- 525 Legendre P, Legendre L (2012) Numerical Ecology. Elsevier, Amsterdam. pp.1006.
- 526 Liu X, Murata T (2010) Advanced modularity-specialized label propagation algorithm for detecting
- 527 communities in networks. Physica A: Statistical Mechanics and its Applications 389:1493-1500
- 528 López JA, Scarabotti PA, Medrano MC, Ghidardi R (2009) Is the red spotted green frog Hypsiboas punctatus
 529 (Anura: Hylidae) selecting its preys? The importance of prey availability. Rev de Biolo Trop 57:847-857
- 530 Luz-Agostinho KDG, Agostinho AA, Gomes LC, Júlio HF, Fugi R (2009) Effects of flooding regime on the
- feeding activity and body condition of piscivorous fish in the Upper Paraná River floodplain. Braz J of Biol
 69:481-490
- 533 MacDonald AAM, Banville F, Poisot T (2020) Revisiting the Links-Species Scaling Relationship in Food
 534 Webs. Patterns 1(7): 100079
- 535 Mormul RP, Thomaz SM, Vieira LJS (2013) Richness and composition of macrophyte assemblages in four
 536 Amazonian lakes. Acta Sci Biol Sci 35(3): 343-350
- 537 Moura Júnior E G, Paiva R MS, Ferreira A C, Pacopahyba L D, Tavares A S, Ferreira F A, Pott A (2015)
- 538 Updated checklist of aquatic macrophytes from Northern Brazil. Acta Amaz 45 (2):111-132
- 539 Olesen J M, Jordano P (2002) Geographic patterns in plant–pollinator mutualistic networks. Ecology
 540 83:2416–2424

- 541 Patefield WM (1981) Algorithm AS 159: an efficient method of generating random R×C tables with given row
- and column totals. J R Stat Soc 30:91-97
- 543 Peiró DF, Alves RG (2006) Insetos aquáticos associados a macrófitas da região litoral da represa do Ribeirão
- das Anhumas (município de Américo Brasiliense, São Paulo, Brasil). Biota Neotr 6:1-9
- 545 Pelicice FM, Agostinho AA (2006) Feeding ecology of fishes associated with Egeria spp. patches in a tropical
- reservoir. Brazil Ecol of Fresh Fish 15:10-19
- 547 Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices:
- 548 estimation and comparison of fractions. Ecology 87(10):2614-2625
- 549 Petry P, Bayley PB, Markle DF (2003) Relationships between fish assemblages, macrophytes and
- environmental gradients in the Amazon River floodplain. J of Fish Biol 63:547-579
- 551 Petsch DK (2016) Causes and consequences of biotic homogenization in freshwater ecosystems. Inter Rev of
 552 Hydro 101:113-122
- 553 Poi de Neiff A (2003) Macroinvertebrates living on Eichhornia azurea Kunth in the Paraguay River. Acta
 554 Limnologica Brasiliensia 15(1): 55-63.
- 555 Projeto Radambrasil. Folha SC (1976) 19 Rio Branco: geologia, geomorfologia, pedologia, vegetacao, uso
- potencial da terra. Rio de Janeiro: Departamento Nacional da Produção Mineral, (Levantamento de recursos
 naturais, 12). Pp.457
- 558 R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical
- 559 Computing, Vienna, Austria. https://www.R-project.org/.
- 560Ramalho W. P, Machado I F, Vieira LJ S (2018) Do flood pulses structure amphibian communities in floodplain
- environments? Biotropica, 50:338–345
- 562 Ramalho WP, Andrade MS, Matos LRA, Vieira LJS (2016) Amphibians of varzea environments and floating
- 563 meadows of the oxbow lakes of the Middle Purus River, Amazonas, Brazil. Biota Neotr 16, 1-15
- 564 Ríos-Villamizar EA, Junior AFM, Waichman AV (2011) Caracterização físico-química das águas e
- desmatamento na bacia do rio Purus, Amazônia brasileira Ocidental. Rev Geo Acad 5:54-56

- Robinson BW, Wilson DS (1998) Optimal Foraging, Specialization, and a Solution to Liem's Paradox. Amer
 Nat 151: 223–235
- Scarabotti PA, López JA, Pouilly M (2011) Flood pulse and the dynamics of fish assemblage structure from
 neotropical floodplain lakes. Ecol Freshw Fish 20:605-618
- 570 Schiesari L, Zuanon J, Azevedo-Ramos C, Garcia M, Gordo M, Messias M, Monteiro Vieira E (2003)
- 571 Macrophyte rafts as dispersal vectors for fishes and amphibians in the Lower Solimões River, Central Amazon.
- 572 J Trop Ecol 19:333-336
- 573 Simon MP, Toft CA (1991) Diet specialization in small vertebrates: mite-eating in frogs. Oikos 61:263-278
- 574 Sioli H (1991) Amazônia: Fundamentos da ecologia da maior região de florestas tropicais. Rio de Janeiro,
- 575 Brasil. Vozes. pp.72.
- 576 SPLink (2018) Centro de Referência em Informação Ambiental, CRIA Fundação de Amparo à Pesquisa do
- 577 Estado de São Paulo, (www.splink.cria.org.br). Acessado em 25/09/2018.
- 578 St. Pierre JI, Kovalenko KE (2014) Effect of habitat complexity attributes on species richness. Ecosphere
 579 5(2):1-10
- 580 Thiers B (2018) Index Herbariorum: A global directory of public herbaria and associated staff. New York
- 581 Botanical Garden's Virtual Herbarium. (http://sweetgum.nybg.org/science/ih/). Acessado em 14/11/2018.
- 582 Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among aquatic habitats in river-floodplain
 583 systems. Hydrobiologia 579, 1-13
- Tylianakis J M, Morris RJ (2017) Ecological networks across environmental gradients. Annu Rev Ecol Evol S,
 48:25-48
- 586 Upton K, Warren-Thomas E, Rogers I, Docherty E (2014) Amphibian diversity on floating meadows in flooded
 587 forests of the Peruvian Amazon. Herpet. Rev. 45, 209-212
- 588 Upton K, Steadman J, Popplewell D, Rogers I, Wills, A (2011) Amazonian frog diversity and microhabitat use.
 589 Herpetology Bull 45:209-212

- 590 Van Den Brink FWB, Van Der Velde G, Buijse AD, Klink AG (1996) Biodiversity of the Lower Rhine and
- 591 Meuse river-floodplains: its significance for ecological management. Netherlands Journal of Ecology 30: 129-

592 149.

- 593 Ward JV, Tockner L (2001) Biodiversity: towards a unifying theme for river ecology. Freshw Biol 46:807-819
- 594 Zanata TB, Dalsgaard B, Passos FC et al. 2017. Global patterns of interaction specialization in bird–flower
- 595 networks. J. Biogeogr 44:1891-1910
- 596

597 Supplementary Information

- Table S1. Relative abundance of macrophyte species found in three oxbow lakes of different
- 599 connectivity during the flood and drought hydrological regime in the middle Purus River,
- 600 Amazon basin, Brazil.

Touron	High connectivity		Medium connectivity		Low connectivity		Relative
Taxon	Flood	Drought	Flood	Drought	Flood	Drought	abundance
Amaranthaceae							
Alternanthera philoxeroides	0.25	0.19					0.08
Araceae							
Lemna minuta	7.80	3.89	5.89	10.98	0.17	0.96	4.78
Pistia stratiotes	42.28	24.73	34.55	11.24	4.94		20.86
Wolffiela lingulata	0.15	0.17	0.19			2.03	0.42
Araliaceae							
Hydrocotyle ranunculoides			1.69	0.67	4.51	28.00	5.58
Asteraceae							
Eclipta prostrata	0.70	0.67					0.26
Enydra anagallis	5.35	22.94		0.60		0.12	5.54
Gymnocoronis spilanthoides			0.48				0.08
Mikania scandens					2.64	2.32	0.80
Commelinaceae							
Commelina erecta		0.19					0.04
Cucurbitaceae							
Luffa operculata		0.29					0.06
Cyperaceae							
Oxycaryum cubense	1.28	2.27	7.35	20.66	17.14	6.99	8.42
Euphorbiaceae							
Caperonia castaneifolia			0.40				0.07
Fabaceae							
Mimosa pigra				0.19			0.02

nce

Table S2. Abundance of macroinvertebrates found in three oxbow lakes of different

- 604 connectivity during the flood and drought hydrological regime in the middle Purus River,
- 605 Amazon basin, Brazil.

Taxon	High connectivity		Medium	connectivity	Low co	onnectivity	Relative
Tuxon	Flood	Drought	Flood	Drought	Flood	Drought	abundance
Acarina	1	10		3	5	1	0.49
Araneae	44	109	32	95	25	95	9.90
Blattodea	14	11	2	4		15	1.14
Coccinellidae	4		2		2	2	0.25
Coleoptera	47	22	58	25	119	16	7.10
Curculionidae	11	32	7	7	64	21	3.51
Diptera (Culicidae)	90	67	10	66	149	211	14.67
Diptera (Muscidae)	85	39	6	16	61	69	6.83
Gastropoda	11	4	17		18	9	1.46
Gerridae		4					0.10
Hemiptera	170	195	7	20	86	237	17.69
Heteroptera	61	75	25	13	78	40	7.23
Hymenoptera (Apoidea)		1	1		1	2	0.12
Hymenoptera (Formicidae)	105	40	24	12	17	4	5.00
Larva	9				36	7	1.29
Lepidoptera	6	9	1	3	3	3	0.62
Mantodea		4					0.10
Odonata	1	2	1		7	10	0.52
Orthoptera	42	141	102	178	163	60	16.98
Scarabaeidae		9	19	61	14	62	4.08
Trichoptera						8	0.20
Vespidae	8	3	4	3	2	9	0.72
Total Geral	709	777	318	506	850	881	100.00

608	Table S3. H	Hylid s	pecies c	ollected	in three	oxbow	lakes of	different	connectivity	during	the
		~	1						2	<i>U</i>	

flood and drought hydrological regime in the middle Purus River, Amazon basin, Brazil.

Species	High connectivity		Medium	connectivity	Low connectivity		Total
Species	Flood	Drought	Flood	Drought	Flood	Drought	abundance
Boana punctata	6	39	8	26	16	34	129
Dendropsophus reticulatus	54	106	78	55	33	82	408
Sphaenorhynchus carneus	31	0	0	0	21	0	52
Sphaenorhynchus dorisae	10	2	0	0	22	0	34
Sphaenorhynchus lacteus	20	0	48	33	16	1	118
Total abundance	121	147	134	114	108	117	741

612	Table S4.	Food items	consumed	by five	hylid	species	in three	oxbow	lakes	of differe	ent
• • =	1 4010 0 11	1 000 100 1110	••••••••	0,11,0		op		0110011		01 011010	

613 connectivity during the flood and drought hydrological regime in the middle Purus River,

614 Amazon basin, Brazil.

Taxon	High connectivity		Medium connectivity		Low connectivity		Total
	Flood	Drought	Flood	Drought	Flood	Drought	frequency
Acari	1	0	0	0	0	1	2
Amblypgi	0	0	0	0	2	9	11
Apoidae	0	0	3	4	0	1	8
Araneae	3	15	3	26	5	13	65
Blattodea	3	8	2	3	2	4	22
Cerambicidae	0	0	0	2	0	0	2
Coccinellidae	0	1	0	0	0	0	1
Coleoptera	3	3	8	0	1	1	16
Curculionidae	1	0	0	1	0	1	3
Culicidae	3	3	10	13	0	3	32
Elateridae	0	0	0	0	0	0	0
Formicidae	47	8	21	21	32	3	132
Heteroptera	1	5	0	3	0	0	9
Hemiptera	0	7	0	6	3	5	21
Isoptera	0	0	0	0	0	23	23
Lepidoptera	5	1	0	2	0	4	12
Muscidae	0	0	1	6	0	3	10
Odonata	0	0	0	1	0	3	4
Orthoptera	1	12	1	3	1	4	22
Scarabaeidae	0	2	0	0	0	13	15
Vespidae	0	3	1	2	0	1	7

615